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Deterministic Models of the Simplest Chemical
Reactions
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We present a general mathematical framework for constructing deterministic
models of simple chemical reactions. In such a model, an underlying dynami-
cal system drives a process in which a particle undergoes a reaction (changes
color) when it enters a certain subset (the catalytic site) of the phase space and
(possibly) some other conditions are satisfied. The framework we suggest allows
us to define the entropy of reaction precisely and does not rely, as was the case
in previous studies, on a stochastic mechanism to generate additional entropy.
Thus our approach provides a natural setting in which to derive macroscopic
chemical reaction laws from microscopic deterministic dynamics without invok-
ing any random mechanisms.

KEY WORDS: Reactive dynamical systems; coloring entropy; skew product;
reaction rate.

1. INTRODUCTION

The derivation of macroscopic chemical rate laws from microscopic deter-
ministic dynamics is one of the central problems of statistical
mechanics. To date there have been several attempts to establish this link
by modeling chemically reacting processes using low-dimensional dynam-
ical systems. In one dimension, Elskens, et al.,(1) studied non-interacting
particles of two colors, which change color when their trajectories cross.
In ref. 2, this model of isomerization kinetics was modified to allow for
interacting particles. In two dimensions, coloring processes driven by the
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dynamics of triadic baker maps on chains of squares(3,4) have been stud-
ied and reaction–diffusion equations derived for the color densities.

Recently, the more realistic model of a two-dimensional Lorentz gas
has been used to drive the underlying dynamics of the coloring system. In
this model, a subset of the scatterers is chosen to be the reactive catalytic
site. A particle, initially colored one of two colors, say red or green, is sub-
ject to the usual dynamics induced by elastic collisions with the fixed scat-
terers until it reaches the catalytic site. The particle changes color upon
impact with the catalyst and continues to reflect elastically. In this setting,
Nielsen and Kapral(5) defined a colored entropy for the system, which
they related numerically to a colored rate of escape. Using their definition
of colored entropy, the authors obtained what they described as surpris-
ing and counterintuitive results which we address in this paper. Lemma 1
and the example of Section 3.2 include the case considered in their paper
and we reinterpret the entropy of such a system in the exact mathematical
framework presented in Section 2.

Claus and Gaspard(6,7) studied the reactive eigenmodes, which govern
the rate of relaxation of the color densities and derived the related reac-
tion–diffusion equations. In order to obtain an increase in entropy due to
the coloring process, however, they introduced a purely random mecha-
nism, which allowed the change in color to take place with probability p,
each time the particle collided with the catalytic site.

The purpose of this paper is to present a general and purely determin-
istic mathematical setting for chemical reactions in dynamical systems. The
corresponding mathematical model can be expressed as a skew product of
measurable mappings. From this point of view, questions of determinis-
tic chemical reactions in dynamical systems and especially of the entropy
of such reactions are addressed rigorously and in a purely dynamical set-
ting without invoking any probabilistic mechanisms. The coloring entropy
of a general system is exactly defined and several basic examples are pre-
sented which demonstrate the different types of behavior of coloring sys-
tems. Although the examples we present in Section 3 use the Lorentz gas
as the underlying dynamical system driving the motion of the colored par-
ticle, our approach, which we formulate in Section 2, is general and can be
used for any underlying dynamical system. In an effort to make the paper
self-contained, we include all necessary definitions and results.

2. THE COLORING SYSTEM AS A SKEW PRODUCT

Suppose we have a dynamical system in a space X generated by a
finite dimensional system of differential equations or a map. We place a
particle at a point in X and attach to that particle a color, red or green.
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We choose a subset C of X, which we refer to as the catalytic site for
the coloring reaction. We then consider the orbit of the particle under the
dynamics in X. The color of the particle changes from red to green or
vice versa only when the particle enters the catalytic site C; however, we
may also consider additional conditions which must be met in order for
the color change to take place. We model these via a function acting on a
space Y representing variables which influence the chemical reaction.

The additional condition expressed by the parameter y ∈ Y can be
interpreted in a number of ways depending on the specific model under
consideration. In the example of Section 3.2, we consider it as a thresh-
old which must be exceeded in order to trigger the chemical reaction at
the catalytic site. In Section 3.3, y represents the velocity of the particle
and in Section 3.4, it represents the (unknown) dynamics of a second par-
ticle in the system. In general, y will represent a component of the system
(possibly depending on the dynamics in X) which affects the coloring pro-
cess.

We formulate our approach as follows. We assume that (X,A) and
(Y,B) are Lebesgue spaces with probability measures µX and µY and that
T:X →X is a measure-preserving transformation of X. Let {Sx}x∈X be a
measurable family of transformations of Y , which preserve the measure
µY . We call X the base of the skew product and refer to the copy of Y

above each x ∈X as a fiber.
The catalytic site C is a measurable subset of X. We denote the color

of the particle by α = ±1 and assume for simplicity that the additional
condition introduced above can be expressed in terms of a (possibly vec-
tor) parameter y belonging to a measurable set D ⊂Y . The coloring sys-
tem can be expressed simply as the skew product

U(x, y,α)= (T x, Sxy,Rx,yα), (1)

where Rx,yα=α′ is different from α if and only if T x ∈C and Sxy ∈D. We
define Z ={−1,1} and note that Rx,y :Z � is a measurable family of maps
on X ×Y .

2.1. Rate of Reaction

Reaction rates for models of chemical reactions can be defined in
several ways. In this paper, we are concerned with models in which a
single particle changes color over time, so it is natural to consider an
average rate of reaction rather than an instantaneous one. In this section,
we define the asymptotic rate of reaction in order to discuss its relation to
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the coloring entropy defined in Section 2.3. This relation will be discussed
in the examples of Section 3.

The asymptotic rate of reaction ρ of the coloring system (1) can be
expressed as the average of the asymptotic rates along orbits. Letting χA

denote the characteristic function of a set A⊂X ×Y , we define

ρ := lim
n→∞

1
n

∫
X

∫
Y

n∑
i=1

χC×D(T ix, Si
xy) dµY dµX, (2)

where Si
x denotes the iterates of Sx along the orbit of x, i.e., Si

xy =
ST i−1x · · ·ST xSxy. When the skew product (T , Sx) is ergodic, the averages
(1/n)

∑n
i=1 χC×D(T ix, Si

xy) converge to a constant so that ρ takes on an
especially simple form,

ρ =µX(C)µY (D). (3)

We will use these descriptions of the reaction rate in discussing the exam-
ples of Section 3, two of which are ergodic and one of which is not.
In general, reaction rates for non-ergodic systems behave in a complex
manner and the usual statistical arguments do not hold (see for example,
ref. 8).

2.2. Abramov–Rokhlin Formula

We recall the Abramov–Rokhlin formula for the entropy of a skew
product.(9) Given Lebesgue spaces (X,A) and (Y,B) with probability mea-
sures µX and µY , define W =X×Y and λ=µX

⊗
µY . Let T and {Sx}x∈X

be defined as above. The skew product U(x, y) = (T x, Sxy) is a measur-
able transformation on X×Y and the measure-theoretic entropy of U with
respect to λ is given by

h(U)=h(T )+hT (S), (4)

where h(T ) is the entropy of T with respect to µX and hT (S) is defined
as follows. For any partition η of Y with finite entropy H(η), define ηn

x =∨n−1
k=0 S−1

x S−1
T x · · ·S−1

T k−1x
η for n�1. Then hT (S, η)= inf

n
(1/n)

∫
X

H(ηn
x)dµX(x)

and hT (S)= supη hT (S, η).
When U = U(x, y,α) = (T x, Sxy,Rx,yα) as in the case of system (1),

the formula generalizes to h(U) = h(T ) + hT (S) + hS,T (R). In our case,
however, hS,T (R)=0 since Z is a discrete space with only two points.
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2.3. Coloring Entropy

Let T , S, R and U be as defined in the description of the coloring
system (1). Let ξ ={D,Y\D} be the partition of Y defined by the coloring
condition Rx,yα =−α if and only if (T x, Sxy)∈C ×D. Following (4), we
define the coloring entropy of such a system to be

hc(U)=hT (S, ξ). (5)

This definition of coloring entropy is motivated by considering the
sequence of maps Rn

x,yα =R
T n−1x,Sn−1

x y
· · ·Rx,yα which either change or do

not change the color of the particle as the system evolves. The entropy
that we have defined measures the uncertainty inherent in predicting the
color αn of the particle at time n, knowing only the orbit of the coordi-
nate x and its coloring history α0, . . . , αn−1. This is precisely the informa-
tion contained in the map T and the partition ξ .

At first glance, one might be tempted to define the coloring entropy
simply as hT (S) since that is the difference between the entropy of the
underlying dynamical system h(T ) and that of the skew product h(U).
However, hT (S) does not reflect any information about D, which clearly
affects the rate (and entropy) of the coloring process. In fact, if D is the
empty set, no coloring occurs and there should be no coloring entropy.

Our first observation is along these lines and is fairly straightforward.

Lemma 1. If U =U(x,α), i.e., U does not depend on an additional
parameter y, then the coloring entropy is zero.

Lemma 1 says that if we take the case in which the particle changes
color if and only if it enters a certain subset C of X, then there is no increase
in entropy due to the coloring process. In fact, this is precisely the setting
of ref. 5, in which the authors attempted to compute a kind of coloring
entropy. Given the mathematical framework presented here, it is clear that
there can be no increase in entropy due to the coloring process without the
introduction of an additional parameter to control the reaction.

Proof of Lemma 1. If U =U(x,α), we can put the system into the
form of (1) by artificially introducing y. Simply let S be any measure-pre-
serving map of a Lebesgue space Y and set D =Y or ∅. In either case, ξ

is the trivial partition so that hT (S, ξ)=0.

It is possible to construct a coloring condition so that D = Dx var-
ies according to x (see the second and third examples of Section 3).
Now ξ = ξx depends on x and we need to return to the motivation
provided by the coloring sequence α0, . . . , αn−1 in order to interpret (5)
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in this case. Knowing αn given α0, . . . , αn−1 means knowing whether
ST n−1x · · ·ST xSxy ∈ DT nx or not. This is the information contained in the
partition S−1

x S−1
T x · · ·S−1

T n−1x
ξT nx . Putting this together with the definitions

of Section 2.2, we see that

H(ξn
x )=H

(
n−1∨
k=0

S−1
x S−1

T x · · ·S−1
T k−1x

ξT kx

)

is the information known at the nth step so that

hT (S, ξ)= lim
n→∞

1
n

∫
X

H

(
n−1∨
k=0

S−1
x S−1

T x · · ·S−1
T k−1x

ξT kx

)
dµX. (6)

With this interpretation of H(ξn
x ), the definition (5) remains the same.

It is a standard result of ergodic theory that the limit in (6) exists
as long as the family of partitions {ξx} depends measurably on x and∫
X

H(ξx)dµX <∞. Indeed, letting fn(x)=H
(∨n−1

k=0 S−1
x S−1

T x · · ·S−1
T k−1x

ξT kx

)
,

it is easy to show that fn+m(x) � fn(x) + fm(T nx) for each n,m � 0 so
that limn→∞(1/n)fn(x) exists for almost every x by the subadditive ergo-
dic theorem (see for instance ref. 10, Section 10.2).

The definition of the reaction rate ρ is also modified in the obvious
way so that Eq. (2) becomes

ρ = lim
n→∞

1
n

∫
X

∫
Y

n∑
i=1

χC×D
T ix

(T ix, Si
xy) dµY dµX.

In this case, when (T , Sx) is ergodic, although the simple expression (3) is
no longer valid, the ergodic averages do converge to a constant,

ρ =
∫

X

∫
Y

χC×Dx dµY dµX.

3. DETERMINISTIC DYNAMICAL COLORING MODELS

In this section, we present three examples of coloring models in order
to give some intuition for how the mathematical framework of the pre-
vious section applies to coloring systems. The examples presented below
capture three typical possibilities for a general coloring system: zero col-
oring entropy, positive coloring entropy with a known mechanism, and a
particle in a thermostat in which the unknown dynamics of other particles
affect the coloring process.



Deterministic Models 245

3.1. Setting

For simplicity, in each of the following examples our underlying
dynamical system is a Lorentz gas on a torus reflecting elastically off
three convex scatterers of equal size arranged symmetrically. The flow
moves with constant speed and we let τmin be the minimum time required
between collisions. We assume the system has finite horizon and denote
this maximum time between collisions by τmax.

The billiard map induced by the flow is given in canonical coordi-
nates as T (i, s, ϕ)= (i′, s′, ϕ′) where i is the scatterer, s is the position on
the scatterer, 0 � s � 2π , and ϕ is the angle made with the normal vector
on the scatterer after reflection, −π/2 � ϕ � π/2. Set x = (i, s, ϕ) and let
X denote the domain of T . We refer to the angular coordinate of a point
x ∈X by ϕ(x). Let µ be the usual absolutely continuous invariant measure
for the billiard map given by dµ=c cos ϕ dϕ ds where c is the normalizing
constant.

We choose one of the three scatterers to be the catalytic site where
our reaction will take place. For definiteness, let us say the catalytic scat-
terer C is i =1.

3.2. A Simple Example with Positive Coloring Entropy

We build the skew-product U by introducing the parameter space Y =
[0,1] and the doubling map f (y)=2y (mod 1). Let Sx =f if T x ∈C and
|ϕ(T x)|�a; Sx = Id otherwise. The choice of 0 �a �π/2 is arbitrary, but
the added condition on x models a reaction which requires a sufficiently
direct collision of the particle with the coloring site. A collision too close
to tangential does not permit a color change to take place (this is reminis-
cent of enzyme docking and the steric effect in the study of protein bond-
ing(11)). Let C′ = {x ∈C : |ϕ|�a}.

We choose L between 0 and 1 and define D = [L,1]. Then the color-
ing map Rx,y is defined as

Rx,yα =
{−α ifT x ∈C′ andf (y)∈D,

α otherwise,

where as before α =±1 represents the color of the particle. The number L

which defines the condition on y for the color to change is suggestive of a
threshold which must be exceeded in order for the reaction to take place.
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Using the notation of Section 2 for this example, µX =µ and µY is
Lebesgue measure on [0,1] since both f and Id preserve Lebesgue mea-
sure. Given x ∈X, let jn(x)=#{0� i <n : T ix ∈C′}. Then

1
n
H(ξn

x ) = 1
n
H

(
n−1∨
k=0

S−1
x S−1

T x · · ·S−1
T k−1x

ξ

)

= 1
n
H




jn(x)∨
k=0

f −kξ




= jn(x)

n

1
jn(x)

H




jn(x)∨
k=0

f −kξ


 .

For µ-almost-every x, (jn(x)/n)→µ(C′) since T is ergodic and (1/jn(x))

H
(∨jn(x)

k=0 f −kξ
)

→h(f, ξ) as n→∞. Now µ(C′)= (1/3) sin a so that

hc =hT (S, ξ)= sin a

3
h(f, ξ). (7)

The entropy is maximized when L=1/2 and in this case h(f, ξ)= log 2. In
general, h(f, ξ)�H(ξ)=L log L+ (1−L) log(1−L) which shows that the
coloring entropy vanishes as it should when the level L approaches 0 (a
reaction always occurs when x ∈C′) or 1 (no coloring reaction can occur).
The same is true when the angle with the normal required for a sufficiently
direct collision is decreased to zero.

This simple example also illuminates the relationship between the col-
oring entropy and the asymptotic rate of reaction defined earlier. Since
(T , Sx) is ergodic, we may use Eq. (3) together with (7) to write

hc =µX(C′)h(f, ξ)= ρ

µY (D)
h(f, ξ).

The process obviously needs a positive asymptotic reaction rate
to generate coloring entropy, but it needs something stronger: positive
entropy generated by the map on the fiber. This illustrates the fact
that reaction rates are concerned with ergodicity while coloring entropy
requires stronger chaotic properties (e.g., non-vanishing Lyapunov expo-
nents on fibers).
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3.3. An Example with Zero Coloring Entropy

We now introduce an example of a coloring process based on the
Lorentz gas that has an element of uncertainty, but for which the color-
ing entropy is zero. We will later modify the example to obtain a related
system with positive coloring entropy. We color a particle in the Lorentz
gas red or green. In this example, we do not assume that the particle
moves with unit speed. When the particle collides with the catalyst, its
color changes if and only if the particle has collided with the catalyst at
least k times in a given time interval of length τ∗ before the present col-
lision. We think of this condition of color change as requiring the cata-
lyst to be “sufficiently excited” before it reacts with the particle. Although
the reaction needs information inherited from the flow, not just the billiard
map, the coloring process yields no increase in entropy.

Let τ(x) denote the time until the next collision for a particle starting
at x and moving under the flow at constant speed. Set t0 =0 and let tn =∑n−1

i=0 τ(T ix) denote the time of the nth collision starting at x for n�1.
A point in the coloring system is given by (x, α) where x is as before

and α =±1 denotes the color of the particle. We allow the system to flow
for at least n>τ∗/τmin iterates so that we may take sufficiently many pre-
images of a given point in the catalytic site. The dynamics of the system
are given by the coloring billiard map U ,

U(x,α)= (T x,Rxα),

where Rx is defined by

Rxα =



−α if T x ∈C and the catalyst has been hit at least
k times in the preceding time interval of length τ∗,

α otherwise.

We are free to choose k and τ∗ according to how often we want the reac-
tion to occur.

In order to codify this condition more precisely, define r(x)=max{j :
tj (T

−j x) � τ∗}. The function r(x) represents the number of collisions
undergone by the trajectory ending at x in the preceding interval of time
τ∗ under the flow. Note that τ∗/τmax � r � τ∗/τmin once the system has
run for at least time τ∗. Let m(x) = #{−r(x) � i � 0 : T ix ∈ C} and define
C′

v ={x ∈C :m(x)�k}. Then the condition for coloring becomes

Rxα =−α if and only if T x ∈C′
v.
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The only uncertainty here is given by the magnitude v of the velocity of
the particle which is not known and which clearly affects the set C′

v.
We can formalize this from the point of view of the skew product in

the following way. Let Y be the space of permissible speeds and let µY be
any probability measure on Y . If x ∈ C, we let Dx = {y ∈ Y : x ∈ C′

y}, i.e.,
Dx is the set of speeds for which the orbit of x would have collided with
the catalyst sufficiently often to trigger a reaction. Then the full coloring
system becomes

U(x, y,α)= (T x, y,Rx,yα),

where Rx,yα = −α if and only if (T x, y) ∈ C × DT x . Note that Sx = IdY

since the velocity remains constant. Using (6),we see that hc =hT (Id, ξ)=
0.

Although the direct product (T , IdY ) is not ergodic, we can still write
down an expression for the asymptotic rate of reaction which depends on
the measure µY we choose for the velocities.

ρ = lim
n→∞

∫
X

∫
Y

1
n

n∑
i=1

χC×D
T ix

(T ix, y) dµY dµX

= lim
n→∞

∫
Y

∫
X

1
n

n∑
i=1

χC′
y
(T ix) dµX dµY .

For fixed y, the sum converges by the ergodic theorem to µX(C′
y) since

(T ,µX) is ergodic. This yields two equivalent expressions for the reaction
rate,

ρ =
∫

Y

µX(C′
y) dµY =

∫
X

µY (Dx) dµX.

If one wishes to consider the velocity of the particle fixed at a certain
speed y with no uncertainty, then the rate becomes simply ρ =µX(C′

y).

3.4. The Modified System with Positive Coloring Entropy

It is possible to modify the preceding example so that it does yield
positive coloring entropy. The idea is to consider a tagged particle in a
Lorentz gas of non-interacting particles. Only the position and velocity of
the tagged particle are known. For simplicity, we assume here only the
existence of a second particle which must help to excite the catalyst. We
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take T , X and µ as before. In order to synchronize time, it is convenient
to let (St , Y ) be the billiard flow (rather than another billiard map) on the
torus with the same configuration of scatterers which induces the billiard
map T . We fix the speed of both particles and form the standard skew
product V (x, y)= (T x, Sτ(x)y), recalling that τ(x) represents the free flight
time from x to T x under the flow. The state space X × Y describes the
Lorentz gas with two non-interacting particles and we keep track of only
the particle x and its coloring history. The trajectory of the other particle
y is unknown.

We let C̃ ⊂Y be the catalytic scatterer i =1 for the particle y; this cor-
responds to the catalytic site C ⊂X for x. Define q(y)=#{−τ∗ � t �0:Sty ∈
C̃}. The coloring system then becomes U(x, y,α) = (T x, Sτ(x)y,Rx,yα)

where the coloring map is given by

Rx,yα =
{−α if T x ∈C and m(T x)+q(Sτ(x)y)≥k,

α otherwise.

For x ∈C, set Dx ={y ∈Y : q(y)� k −m(x)} while for x /∈C, Dx =∅. This
defines the family of partitions ξx so that coloring occurs after one iterate
if and only if T x ∈C and Sτ(x)y ∈DT x . This yields

ξn
x =

n−1∨
i=0

S−1
τ(x)S

−1
τ(T x) · · ·S−1

τ(T i−1x)
ξT ix =

n−1∨
i=0

S−ti (x)ξT ix,

where as before ti (x) =∑i−1
j=0 τ(T jx). Note that ξx is the trivial partition

when x /∈C so that

ξn
x =

jn(x)∨

=0

S−ti
 (x)ξT i
 (x),

where i
 are the integers i when T ix ∈C and jn(x)=#{0� i <n :T ix ∈C}.
As in the first example, this yields

hc = lim
n→∞

∫
X

1
n
H(ξn

x ) dµ(x)= lim
n→∞

∫
X

jn(x)

n

1
jn(x)

H




jn(x)∨

=0

S−ti
 (x)ξT i
 (x)


dµ(x)

→µ(C) lim
n→∞

∫
X

1
jn(x)

H




jn(x)∨

=0

S−ti
 (x)ξT i
 (x)


dµ(x).
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Note that if k equals 0 or 1, then ξx is the trivial partition for all x, the
coloring process is independent of the second particle y, and hc = 0. The
same is true if the given time threshold τ∗ is too short, namely if τ∗ <

kτmin; then no coloring can occur, ξx is again the trivial partition for all
x, and hc =0.

However, with a suitable choice of k and τ∗, the coloring entropy is
positive. To see this, note that the family of sets Dx is really only a finite
collection D0, . . . ,Dk, where Dx =Di if k−m(x)= i for 1� i �k and Dx =
D0 =Y if m(x)�k. This means there are at most k+1 partitions being per-
muted in the expression for coloring entropy, ξ0, . . . , ξk. A suitable choice
of k and τ∗ means that a positive measure set of x and y satisfy m(x)+
q(y)�k. Without loss of generality, let us assume that the set C1 ={x ∈C :
m(x)= k − 1} has positive measure. For x ∈C1, Dx =D1 and ξ1 is not the
trivial partition. So we can write

H




jn(x)∨

=0

S−ti
 (x)ξT i
 (x)


 = H




j1
n (x)∨

=0

S−t
i1


(x)ξ1 ∨· · ·∨

jk
n (x)∨

=0

S−t
ik


(x)ξk




� H




j1
n (x)∨

=0

S−t
i1


(x)ξ1


 . (8)

In the first step we have grouped the partitions according to whether Dx =
Di and in the second step, we choose to focus on the entropy associated
with one of these, namely ξ1. The index j1

n (x) represents the number of
times T ix ∈C1, 0� i �n, and i1


 , 
=0, . . . , j1
n (x), are the times when T ix ∈

C1.
The expression (8) represents the entropy associated with a skew

product of the form (Px, Sf (x)y). In this example, P is the first return
map to C1 and f (x) = ti (x), where i is the smallest positive integer i

such that T ix returns to C1. This type of skew product has been stud-
ied in some detail in the case when f (x) : C1 → Z

+ satisfies f �β >0 and∫
C1

f dµC1 <∞ (see ref.12). It was shown that such maps have conditional
entropy hP (S1) = h(S1)

∫
C1

f dµC1 . In our case, h(S1) > 0 since St is the
billiard flow, f � τmin > 0, and

∫
C1

f dµC1 = (µC1)
−1
∫
X

τ dµ < ∞ so that
hP (S1) > 0. Since St is a K-system(13) and ξ1 is not the trivial partition,
hP (S1, ξ1)>0 as well, so that the coloring entropy is positive.

Observe that although the coloring entropy is produced by the sec-
ond particle, it does not equal the entropy of a one-particle Lorentz gas.
This would be the case if we considered two independently moving par-
ticles, i.e., a direct product of the corresponding dynamical systems. But
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there is a kind of interaction between particles in our model because the
collisions of both particles with the catalytic site are counted and because
the partitions ξn

x of Y are determined by the time between collisions of x,
not y.

Since (T , Sx) is ergodic, we easily calculate the asymptotic rate of
reaction as

ρ =
∫

X

∫
Y

χC×Dx dµY dµX =
∫

C

µY (Dx)dµX.

This is the same as the expression for the rate in the previous example,
although in that example the skew product is not ergodic and the system
has zero coloring entropy.

4. CONCLUDING REMARKS

In the above examples based on the Lorentz gas, we chose a configu-
ration of three symmetrically arranged scatterers for simplicity. It is clear
that the mathematical setting is valid for any configuration of convex scat-
terers on a torus with a bounded free path. The catalytic site C need not
be one of the scatterers, but may be taken to be a subset of one or sev-
eral of them. In general of course, the base of the skew product need not
be a Lorentz gas at all: the mathematical setting presented in Section 2 is
general enough to include any dynamical system which is chosen to model
the motion of the reacting particle.

The examples of Section 3 point out an important difference between
reaction rates and coloring entropy. The former relies on the ergodicity
of the skew product (T , Sx) and the associated statistical properties of
the system along orbits; the latter, on the other hand, requires that the
dynamics on fibers of the skew product be chaotic in addition to the usual
ergodicity in order to generate positive entropy. In fact, this is precisely
why Lemma 1 holds. The space Z = {−1,1} which represents the set of
possible colors of the particle contains only two elements and so can-
not generate any entropy. This is what necessitates the introduction of the
additional parameter y (the internal “chemical” variable) to control the
color change and create the additional uncertainty necessary for positive
coloring entropy.

In this paper, we have given a general framework for constructing
deterministic models of chemical reactions. Our approach is quite broad
and allows us to construct more complicated models of concrete chemi-
cal reactions than have previously been available. Indeed the parameter y

could be a vector with any (finite) number of components. Alternatively,
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one can consider a skew product generated by any (finite) number of
maps, i.e. U(x, y1, y2, . . . , ym,α)= (T (x), Sx(y1), Sx,y1(y2), Sx,y1,... ,ym−1(ym),

Rx,y1,... ,ym(α)), where all yi , 1� i �m, as well as α, are vectors.
Moreover, our approach is consistently deterministic and does not

require a stochastic mechanism (a random trial) to decide whether or not
a reaction in fact occurs. Therefore, it provides a natural and consistently
deterministic framework for the derivation of macroscopic chemical rate
laws from microscopic deterministic dynamics.
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